
Lecture 5 Summary

PHYS798S Spring 2016

February 14, 2016

The Cooper pairing problem

0.1 Review of Free Electron Fermi Gas Model of a Metal
Metals are made up of positively charged ions and the "free" electrons (meaning
that they are not localized to the ions, but can go anywhere in the metal)
The electrons are assumed to not interact with each other or with the ions,
except through the Pauli exclusion principle
We solved the single-particle Schrodinger equation for a free particle in a box of
size L×L×L obeying perioidic boundary conditions: ψ(x+L, y, z) = ψ(x, y, z)

The solutions are plane (running) waves: ψ ∼ 1√
V
ei
−→
k ·−→r , with

−→
k = {kx, ky, kz}

V = L3 is the volume of the metal box
The eigen-energies are E = ~2k2/2m
The solutions are also eigenfunctions of the linear momentum operator, with
eigenvalue ~

−→
k

The periodic boundary conditions force the momenta to be discrete and labeled
by three integers which can be positive, negative, or zero
No two identical electrons with overlapping wavefunctions can occupy the same
exact quantum state (i.e. the same exact list of eigenvalues)
All states are filled starting at E = 0, and then up to the last occupied state
at the Fermi energy EF = ~2k2F /2m. The collection of filled states is called
the Fermi sea. In this simple free-electron model the surface of filled states is a
sphere in momentum space (aka reciprocal space or k-space).
Typical Fermi energies for metals are on the scale of 1 to 10 eV
The density of electronic states for free electrons in a 3D metal D(E) ∼ E1/2

The density of electronic states can be determined from measurements of the
electronic specific heat at low temperatures Cel = γT , where γ = π2

3 D(EF )k2B
In Al the density of states at the Fermi energy is about 0.57 states/atom/eV

0.2 Cooper’s Calculation
Consider a metal at zero temperature with all of the electrons in the ground
state occupying all states within the Fermi sphere, and no states occupied out-
side.
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Now add two electrons to states outside the Fermi sphere. They do not interact
with the electrons in the Fermi sea except through the Pauli exclusion principle
- they cannot occupy any states inside the sphere in momentum space. The two
electrons can interact with each other.
The objective now is to write down an ansatz for the two-electron wavefunc-
tion, put it in to the Schrodinger equation, and solve for the eigen-energy. If the
ground state energy is less than 2EF then a bound state of the two electrons is
formed, and we are a step closer to a microscopic understanding of supercon-
ductivity.

We take the two-particle wavefunction to be of the form Ψ (1, 2) ∼ ψ (−→r 1 −−→r 2) ei
−→
Q ·
−→
Rχ (σ1, σ2),

where ψ is the relative coordinate (−→r = −→r1−−→r2) wavefunction,
−→
R and

−→
Q are the

center of mass position and momentum, respectively and χ is the two-electron
spinor wavefunction.

In the ground state we expect the center of mass momentum to be zero−→
Q = 0. This means that the two electrons have equal and opposite momenta
~
−→
k and −~

−→
k . The two-particle wavefunction Ψ must be anti-symmetric upon

exchange of all the labels of the two particles. One way to accomplish this is to
have a symmetric relative wavefunction ψ ∼ cos(

−→
k · −→r ) where −→r = −→r 1 − −→r 2

is the relative coordinate, times an anti-symmetric spinor, namely the spin-
singlet |00〉. The other option is to have an anti-symmetric relative wavefunc-
tion ψ ∼ sin(

−→
k · −→r ) times a symmetric spinor, namely the spin-triplet set of

states |11〉, |10〉 and |1− 1〉. Because we anticipate there will be an attractive
interaction, we choose the symmetric space wavefunction since this brings the
two particles closer together. Finally, the general ansatz is a sum over all possi-
ble states (

−→
k ,−
−→
k ) outside the filled Fermi sphere, weighted by a

−→
k -dependent

factor g−→
k
: Ψ(1, 2) =

∑
k>kF

g−→
k

cos
(−→
k · −→r

)
|00〉.

0.3 Two-particle Schodinger Equation
Substituting the anstaz wavefunction in to the 2-electron Schrodinger equation,
multiplying through by e−i

−→
k′ ·−→r and integrating over all space yields the follow-

ing result.
(E − 2εk) g−→

k
=
∑
−→
k ′
g−→
k′
V−→
k ,
−→
k′

where εk ≡ ~2k2/2m and we have defined the Fourier transform of the pairing
interaction,

V−→
k ,
−→
k′

=
´
V olume

d3rV (−→r )e
i
(−→
k −
−→
k′
)
·−→r .

V−→
k ,
−→
k′

characterizes the strength of the potential for scattering a pair of electrons

with momentum (
−→
k ,−
−→
k ) to momentum (

−→
k′ ,−

−→
k′ ). If we can find a set of gk

with E < 2EF then a bound pair exists.
Cooper introduced a simplified potential,
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V−→
k ,
−→
k′

=

{
−V E < ~ωc
0 E > ~ωc

where energy is measured relative to the Fermi energy, V > 0, and ~ωc is the
energy scale of the pairing interaction. We shall see that for "conventional"
superconductors the ion lattice vibrations will set this energy scale, and it is
about 10 meV in a metal like Pb. This pairing interaction will be studied in
detail in the next lecture. Using this potential, the Schrodinger equation now
becomes,

g−→
k

=
V
∑
−→
kF <

−→
k ′<
−→
kc
g−→
k′

2εk−E . Note the restricted sum on k′.
Summing both sides on k, cancelling the sums on k′ of gk′ , one arrives at,
1
V =

∑
−→
kF<

−→
k ′<
−→
kc

1
2εk−E

We can replace the sum on k by an integral on energy through use of the density
of states, D(ε) with ε = ~2k2/2m,
1
V =

´ EF+~ωc

EF

D(ε)dε
2ε−E .

Since ~ωc << EF we can take the density of states to be constant and equal to
that at the Fermi energy, D(EF ). The integral is now straightforward and one
finds (excercise for the reader!) that the energy eignevalue is,
E = 2EF + 2~ωc

1−e2/D(EF )V .
At first glance it appears that E > 2EF , but examine the exponential with the
dimensionless quantity D(EF )V more closely. If we take the "weak coupling
approximation" and assume that D(EF )V << 1, then the eigenenergy can be
written to good approximation as,
E ' 2EF − 2~ωce−2/D(EF )V , which is less than 2EF , showing that a bound
state, a Cooper pair, is formed.
Note that the binding energy is non-analytic in the small parameter, meaning
that this result cannot be derived by ordinary perturbation theory, accounting
for the many failures to produce a theory of superconductivity before BCS.

0.4 Binding Energy Systematics
The binding energy depends on the energy scale of the ion vibrations ~ωc as
well as the strength of the pairing interaction V and the density of states (DOS)
at the Fermi energy D(EF ). Let’s examine these dependencies, assuming that
the superconducting transition temperature scales with the binding energy of
the Cooper pair, i.e. kBTc ∼ 2~ωce−2/D(EF )V .
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